Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114031, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38583153

RESUMO

Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.


Assuntos
Diferenciação Celular , Ventrículos Laterais , Fator Inibidor de Leucemia , Organoides , Células-Tronco Pluripotentes , Humanos , Organoides/metabolismo , Organoides/citologia , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Fator de Transcrição STAT3/metabolismo , Neuroglia/metabolismo , Neuroglia/citologia , Transdução de Sinais
2.
Nat Commun ; 13(1): 5688, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202854

RESUMO

Human telencephalon is an evolutionarily advanced brain structure associated with many uniquely human behaviors and disorders. However, cell lineages and molecular pathways implicated in human telencephalic development remain largely unknown. We produce human telencephalic organoids from stem cell-derived single neural rosettes and investigate telencephalic development under normal and pathological conditions. We show that single neural rosette-derived organoids contain pallial and subpallial neural progenitors, excitatory and inhibitory neurons, as well as macroglial and periendothelial cells, and exhibit predictable organization and cytoarchitecture. We comprehensively characterize the properties of neurons in SNR-derived organoids and identify transcriptional programs associated with the specification of excitatory and inhibitory neural lineages from a common pool of NPs early in telencephalic development. We also demonstrate that neurons in organoids with a hemizygous deletion of an autism- and intellectual disability-associated gene SHANK3 exhibit intrinsic and excitatory synaptic deficits and impaired expression of several clustered protocadherins. Collectively, this study validates SNR-derived organoids as a reliable model for studying human telencephalic cortico-striatal development and identifies intrinsic, synaptic, and clustered protocadherin expression deficits in human telencephalic tissue with SHANK3 hemizygosity.


Assuntos
Transtorno Autístico , Transtorno Autístico/genética , Humanos , Proteínas do Tecido Nervoso/metabolismo , Organoides/metabolismo , Protocaderinas , Telencéfalo
3.
Cell Death Differ ; 29(2): 293-305, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34974533

RESUMO

Huntington's disease is caused by a pathologically long (>35) CAG repeat located in the first exon of the Huntingtin gene (HTT). While pathologically expanded CAG repeats are the focus of extensive investigations, non-pathogenic CAG tracts in protein-coding genes are less well characterized. Here, we investigated the function and evolution of the physiological CAG tract in the HTT gene. We show that the poly-glutamine (polyQ) tract encoded by CAGs in the huntingtin protein (HTT) is under purifying selection and subjected to stronger selective pressures than CAG-encoded polyQ tracts in other proteins. For natural selection to operate, the polyQ must perform a function. By combining genome-edited mouse embryonic stem cells and cell assays, we show that small variations in HTT polyQ lengths significantly correlate with cells' neurogenic potential and with changes in the gene transcription network governing neuronal function. We conclude that during evolution natural selection promotes the conservation and purity of the CAG-encoded polyQ tract and that small increases in its physiological length influence neural functions of HTT. We propose that these changes in HTT polyQ length contribute to evolutionary fitness including potentially to the development of a more complex nervous system.


Assuntos
Doença de Huntington , Peptídeos , Animais , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/patologia , Camundongos , Neurônios/metabolismo , Peptídeos/genética , Peptídeos/metabolismo
4.
Cell Rep Methods ; 2(12): 100367, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36590694

RESUMO

Stem cell engineering of striatal medium spiny neurons (MSNs) is a promising strategy to understand diseases affecting the striatum and for cell-replacement therapies in different neurological diseases. Protocols to generate cells from human pluripotent stem cells (PSCs) are scarce and how well they recapitulate the endogenous fetal cells remains poorly understood. We have developed a protocol that modulates cell seeding density and exposure to specific morphogens that generates authentic and functional D1- and D2-MSNs with a high degree of reproducibility in 25 days of differentiation. Single-cell RNA sequencing (scRNA-seq) shows that our cells can mimic the cell-fate acquisition steps observed in vivo in terms of cell type composition, gene expression, and signaling pathways. Finally, by modulating the midkine pathway we show that we can increase the yield of MSNs. We expect that this protocol will help decode pathogenesis factors in striatal diseases and eventually facilitate cell-replacement therapies for Huntington's disease (HD).


Assuntos
Neurônios Espinhosos Médios , Células-Tronco Pluripotentes , Humanos , Reprodutibilidade dos Testes , Neurogênese , Corpo Estriado , Células-Tronco Pluripotentes/metabolismo
5.
Science ; 372(6542)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958447

RESUMO

Deciphering how the human striatum develops is necessary for understanding the diseases that affect this region. To decode the transcriptional modules that regulate this structure during development, we compiled a catalog of 1116 long intergenic noncoding RNAs (lincRNAs) identified de novo and then profiled 96,789 single cells from the early human fetal striatum. We found that D1 and D2 medium spiny neurons (D1- and D2-MSNs) arise from a common progenitor and that lineage commitment is established during the postmitotic transition, across a pre-MSN phase that exhibits a continuous spectrum of fate determinants. We then uncovered cell type-specific gene regulatory networks that we validated through in silico perturbation. Finally, we identified human-specific lincRNAs that contribute to the phylogenetic divergence of this structure in humans. This work delineates the cellular hierarchies governing MSN lineage commitment.


Assuntos
Atlas como Assunto , Corpo Estriado/citologia , Corpo Estriado/embriologia , Neurogênese/genética , RNA Longo não Codificante/genética , Análise de Célula Única , Fatores de Transcrição/genética , Feto , Neurônios GABAérgicos/metabolismo , Humanos , RNA-Seq , Transcrição Gênica
6.
Stem Cell Reports ; 14(5): 876-891, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32302555

RESUMO

Huntington disease (HD) is an inherited late-onset neurological disorder characterized by progressive neuronal loss and disruption of cortical and basal ganglia circuits. Cell replacement using human embryonic stem cells may offer the opportunity to repair the damaged circuits and significantly ameliorate disease conditions. Here, we showed that in-vitro-differentiated human striatal progenitors undergo maturation and integrate into host circuits upon intra-striatal transplantation in a rat model of HD. By combining graft-specific immunohistochemistry, rabies virus-mediated synaptic tracing, and ex vivo electrophysiology, we showed that grafts can extend projections to the appropriate target structures, including the globus pallidus, the subthalamic nucleus, and the substantia nigra, and receive synaptic contact from both host and graft cells with 6.6 ± 1.6 inputs cell per transplanted neuron. We have also shown that transplants elicited a significant improvement in sensory-motor tasks up to 2 months post-transplant further supporting the therapeutic potential of this approach.


Assuntos
Corpo Estriado/citologia , Células-Tronco Embrionárias Humanas/transplante , Doença de Huntington/terapia , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Corpo Estriado/fisiologia , Células-Tronco Embrionárias Humanas/citologia , Humanos , Locomoção , Masculino , Células-Tronco Neurais/citologia , Neurogênese , Ratos , Regeneração , Sensação , Substância Negra/citologia , Substância Negra/fisiologia , Núcleo Subtalâmico/citologia , Núcleo Subtalâmico/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia
7.
Cereb Cortex ; 29(5): 2115-2124, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688344

RESUMO

DACH1 is the human homolog of the Drosophila dachshund gene, which is involved in the development of the eye, nervous system, and limbs in the fly. Here, we systematically investigate DACH1 expression patterns during human neurodevelopment, from 5 to 21 postconceptional weeks. By immunodetection analysis, we found that DACH1 is highly expressed in the proliferating neuroprogenitors of the developing cortical ventricular and subventricular regions, while it is absent in the more differentiated cortical plate. Single-cell global transcriptional analysis revealed that DACH1 is specifically enriched in neuroepithelial and ventricular radial glia cells of the developing human neocortex. Moreover, we describe a previously unreported DACH1 expression in the human striatum, in particular in the striatal medium spiny neurons. This finding qualifies DACH1 as a new striatal projection neuron marker, together with PPP1R1B, BCL11B, and EBF1. We finally compared DACH1 expression profile in human and mouse forebrain, where we observed spatio-temporal similarities in its expression pattern thus providing a precise developmental description of DACH1 in the 2 mammalian species.


Assuntos
Corpo Estriado/embriologia , Corpo Estriado/metabolismo , Proteínas do Olho/metabolismo , Neocórtex/embriologia , Neocórtex/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Feto Abortado/embriologia , Feto Abortado/metabolismo , Células Ependimogliais/metabolismo , Idade Gestacional , Humanos , Ventrículos Laterais/embriologia , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Células Neuroepiteliais/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA